Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 72(3): 662-680, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-36773019

RESUMEN

Logical character dependency is a major conceptual and methodological problem in phylogenetic inference of morphological data sets, as it violates the assumption of character independence that is common to all phylogenetic methods. It is more frequently observed in higher-level phylogenies or in data sets characterizing major evolutionary transitions, as these represent parts of the tree of life where (primary) anatomical characters either originate or disappear entirely. As a result, secondary traits related to these primary characters become "inapplicable" across all sampled taxa in which that character is absent. Various solutions have been explored over the last three decades to handle character dependency, such as alternative character coding schemes and, more recently, new algorithmic implementations. However, the accuracy of the proposed solutions, or the impact of character dependency across distinct optimality criteria, has never been directly tested using standard performance measures. Here, we utilize simple and complex simulated morphological data sets analyzed under different maximum parsimony optimization procedures and Bayesian inference to test the accuracy of various coding and algorithmic solutions to character dependency. This is complemented by empirical analyses using a recoded data set on palaeognathid birds. We find that in small, simulated data sets, absent coding performs better than other popular coding strategies available (contingent and multistate), whereas in more complex simulations (larger data sets controlled for different tree structure and character distribution models) contingent coding is favored more frequently. Under contingent coding, a recently proposed weighting algorithm produces the most accurate results for maximum parsimony. However, Bayesian inference outperforms all parsimony-based solutions to handle character dependency due to fundamental differences in their optimization procedures-a simple alternative that has been long overlooked. Yet, we show that the more primary characters bearing secondary (dependent) traits there are in a data set, the harder it is to estimate the true phylogenetic tree, regardless of the optimality criterion, owing to a considerable expansion of the tree parameter space. [Bayesian inference, character dependency, character coding, distance metrics, morphological phylogenetics, maximum parsimony, performance, phylogenetic accuracy.].


Asunto(s)
Algoritmos , Filogenia , Teorema de Bayes , Fenotipo
2.
PLoS One ; 17(1): e0262687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100283

RESUMEN

Poeciliopsis (Cyprinodontiformes: Poeciliidae) is a genus comprised of 25 species of freshwater fishes. Several well-known taxonomic uncertainties exist within the genus, especially in relation to the taxonomic status of Poeciliopsis pleurospilus and P. gracilis. However, to date, no studies have been conducted to specifically address the taxonomic status of these two species. The goal of this study was to examine the taxonomic validity of P. pleurospilus and P. gracilis using genomic data (ddRADseq) in phylogenetic, population genetic, and species delimitation frameworks. Multiple analyses support the recognition of both taxa as distinct species and also permits us to revise their respective distributions. A species delimitation analysis indicates that P. pleurospilus and P. gracilis are distinct species, each of which consists of two distinct lineages that are geographically structured. Phylogenetic and population genetic analyses provide clear evidence that individuals of P. gracilis are distributed north and west of the Isthmus of Tehuantepec in both Pacific and Atlantic river systems in Mexico, whereas individuals of P. pleurospilus are distributed in both Atlantic and Pacific river systems south and east of the Isthmus of Tehuantepec, from southern Mexico to Honduras.


Asunto(s)
Ciprinodontiformes/clasificación , Ciprinodontiformes/genética , ADN/genética , Genética de Población , Filogenia , Polimorfismo de Nucleótido Simple , Animales , ADN/análisis , Genómica
3.
Ecol Evol ; 10(22): 12581-12612, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33250996

RESUMEN

The rapid shift to online teaching in spring 2020 meant most of us were teaching in panic mode. As we move forward with course planning for fall and beyond, we can invest more time and energy into improving the online experience for our students. We advocate that instructors use inclusive teaching practices, specifically through active learning, in their online classes. Incorporating pedagogical practices that work to maximize active and inclusive teaching concepts will be beneficial for all students, and especially those from minoritized or underserved groups. Like many STEM fields, Ecology and Evolution shows achievement gaps and faces a leaky pipeline issue for students from groups traditionally underserved in science. Making online classes both active and inclusive will aid student learning and will also help students feel more connected to their learning, their peers, and their campus. This approach will likely help with performance, retention, and persistence of students. In this paper, we offer broadly applicable strategies and techniques that weave together active and inclusive teaching practices. We challenge instructors to commit to making small changes as a first step to more inclusive teaching in ecology and evolutionary biology courses.

4.
Insect Syst Divers ; 3(3): 2, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31355348

RESUMEN

Phylogenetic trees are crucial to many aspects of taxonomic and comparative biology. Many researchers have adopted Bayesian methods to estimate their phylogenetic trees. In this family of methods, a model of morphological evolution is assumed to have generated the data observed by the researcher. These models make a variety of assumptions about the evolution of morphological characters, and these assumptions are translated into mathematics as parameters. The incorporation of prior distributions further allows researchers to quantify their prior beliefs about the value any one parameter can take. How to translate biological knowledge into mathematical language is difficult, and can be confusing to many biologists. This review aims to help systematics researchers understand the biological meaning of common models and assumptions. Using examples from the insect fossil record, I will demonstrate empirically what assumptions mean in concrete terms, and discuss how researchers can use and understand Bayesian methods for phylogenetic estimation.

5.
Proc Natl Acad Sci U S A ; 116(7): 2624-2633, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642970

RESUMEN

Groundwater-dependent species are among the least-known components of global biodiversity, as well as some of the most vulnerable because of rapid groundwater depletion at regional and global scales. The karstic Edwards-Trinity aquifer system of west-central Texas is one of the most species-rich groundwater systems in the world, represented by dozens of endemic groundwater-obligate species with narrow, naturally fragmented distributions. Here, we examine how geomorphological and hydrogeological processes have driven population divergence and speciation in a radiation of salamanders (Eurycea) endemic to the Edwards-Trinity system using phylogenetic and population genetic analysis of genome-wide DNA sequence data. Results revealed complex patterns of isolation and reconnection driven by surface and subsurface hydrology, resulting in both adaptive and nonadaptive population divergence and speciation. Our results uncover cryptic species diversity and refine the borders of several threatened and endangered species. The US Endangered Species Act has been used to bring state regulation to unrestricted groundwater withdrawals in the Edwards (Balcones Fault Zone) Aquifer, where listed species are found. However, the Trinity and Edwards-Trinity (Plateau) aquifers harbor additional species with similarly small ranges that currently receive no protection from regulatory programs designed to prevent groundwater depletion. Based on regional climate models that predict increased air temperature, together with hydrologic models that project decreased springflow, we conclude that Edwards-Trinity salamanders and other codistributed groundwater-dependent organisms are highly vulnerable to extinction within the next century.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Agua Subterránea , Urodelos/clasificación , Animales , Monitoreo del Ambiente/métodos , Hidrología , Filogenia , Texas
6.
F1000Res ; 8: 1854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32025290

RESUMEN

Many biologists are interested in teaching computing skills or using computing in the classroom, despite not being formally trained in these skills themselves. Thus biologists may find themselves researching how to teach these skills, and therefore many individuals are individually attempting to discover resources and methods to do so. Recent years have seen an expansion of new technologies to assist in delivering course content interactively. Educational research provides insights into how learners absorb and process information during interactive learning. In this review, we discuss the value of teaching foundational computing skills to biologists, and strategies and tools to do so. Additionally, we review the literature on teaching practices to support the development of these skills. We pay special attention to meeting the needs of diverse learners, and consider how different ways of delivering course content can be leveraged to provide a more inclusive classroom experience. Our goal is to enable biologists to teach computational skills and use computing in the classroom successfully.


Asunto(s)
Biología , Metodologías Computacionales , Biología/educación , Sistemas de Computación
7.
Mol Ecol ; 27(10): 2414-2434, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29740906

RESUMEN

To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.


Asunto(s)
Agaricales/fisiología , Hormigas/clasificación , Filogenia , Simbiosis , Agaricales/clasificación , Animales , Hormigas/microbiología , Hormigas/fisiología , Conducta Animal
9.
Mol Biol Evol ; 34(3): 772-773, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013191

RESUMEN

PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Análisis de Secuencia de ADN/métodos , Algoritmos , Evolución Biológica , Simulación por Computador , Genoma , Filogenia , Programas Informáticos
10.
Syst Biol ; 65(4): 602-11, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26715586

RESUMEN

The Mk model was developed for estimating phylogenetic trees from discrete morphological data, whether for living or fossil taxa. Like any model, the Mk model makes a number of assumptions. One assumption is that transitions between character states are symmetric (i.e., the probability of changing from 0 to 1 is the same as 1 to 0). However, some characters in a data matrix may not satisfy this assumption. Here, we test methods for relaxing this assumption in a Bayesian context. Using empirical data sets, we perform model fitting to illustrate cases in which modeling asymmetric transition rates among characters is preferable to the standard Mk model. We use simulated data sets to demonstrate that choosing the best-fit model of transition-state symmetry can improve model fit and phylogenetic estimation.


Asunto(s)
Clasificación/métodos , Modelos Biológicos , Filogenia , Teorema de Bayes , Fósiles , Probabilidad
11.
R Soc Open Sci ; 2(9): 150257, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26473050

RESUMEN

Fungus-gardening (attine) ants grow fungus for food in protected gardens, which contain beneficial, auxiliary microbes, but also microbes harmful to gardens. Among these potentially pathogenic microorganisms, the most consistently isolated are fungi in the genus Escovopsis, which are thought to co-evolve with ants and their cultivar in a tripartite model. To test clade-to-clade correspondence between Escovopsis and ants in the higher attine symbiosis (including leaf-cutting and non-leaf-cutting ants), we amassed a geographically comprehensive collection of Escovopsis from Mexico to southern Brazil, and reconstructed the corresponding Escovopsis phylogeny. Contrary to previous analyses reporting phylogenetic divergence between Escovopsis from leafcutters and Trachymyrmex ants (non-leafcutter), we found no evidence for such specialization; rather, gardens from leafcutters and non-leafcutters genera can sometimes be infected by closely related strains of Escovopsis, suggesting switches at higher phylogenetic levels than previously reported within the higher attine symbiosis. Analyses identified rare Escovopsis strains that might represent biogeographically restricted endemic species. Phylogenetic patterns correspond to morphological variation of vesicle type (hyphal structures supporting spore-bearing cells), separating Escovopsis with phylogenetically derived cylindrical vesicles from ancestral Escovopsis with globose vesicles. The new phylogenetic insights provide an improved basis for future taxonomic and ecological studies of Escovopsis.

12.
J Exp Zool B Mol Dev Evol ; 324(6): 504-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26227660

RESUMEN

Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were rare. The three putative reversals to oviparity with the strongest phylogenetic support occurred in the snakes Eryx jayakari and Lachesis, and the lizard, Liolaemus calchaqui. Our results emphasize that because the conclusions of ancestral state reconstruction studies are often highly sensitive to the methods and assumptions of analysis, researchers should carefully consider this sensitivity when evaluating alternative hypotheses of character-state evolution.


Asunto(s)
Evolución Biológica , Lagartos/clasificación , Serpientes/clasificación , Animales , Femenino , Oviparidad , Filogenia , Viviparidad de Animales no Mamíferos
13.
PLoS One ; 9(10): e109210, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279853

RESUMEN

Despite the introduction of likelihood-based methods for estimating phylogenetic trees from phenotypic data, parsimony remains the most widely-used optimality criterion for building trees from discrete morphological data. However, it has been known for decades that there are regions of solution space in which parsimony is a poor estimator of tree topology. Numerous software implementations of likelihood-based models for the estimation of phylogeny from discrete morphological data exist, especially for the Mk model of discrete character evolution. Here we explore the efficacy of Bayesian estimation of phylogeny, using the Mk model, under conditions that are commonly encountered in paleontological studies. Using simulated data, we describe the relative performances of parsimony and the Mk model under a range of realistic conditions that include common scenarios of missing data and rate heterogeneity.


Asunto(s)
Teorema de Bayes , Filogenia , Algoritmos , Evolución Biológica , Simulación por Computador , Funciones de Verosimilitud , Modelos Biológicos
14.
BMC Evol Biol ; 14: 99, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24884699

RESUMEN

BACKGROUND: Most previous studies of morphological and molecular data have consistently supported the monophyly of the true water bugs (Hemiptera: Nepomorpha). An exception is a recent study by Hua et al. (BMC Evol Biol 9: 134, 2009) based on nine nepomorphan mitochondrial genomes. In the analysis of Hua et al. (BMC Evol Biol 9: 134, 2009), the water bugs in the group Pleoidea formed the sister group to a clade that consisted of Nepomorpha (the remaining true water bugs) + Leptopodomorpha (shore bugs) + Cimicomorpha (assassin bugs and relatives) + Pentatomomorpha (stink bugs and relatives), thereby suggesting that fully aquatic hemipterans evolved independently at least twice. Based on these results, Hua et al. (BMC Evol Biol 9: 134, 2009) elevated the Pleoidea to a new infraorder, the Plemorpha. RESULTS: Our reanalysis suggests that the lack of support for the monophyly of the true water bugs (including Pleoidea) by Hua et al. (BMC Evol Biol 9: 134, 2009) likely resulted from inadequate taxon sampling. In particular, long-branch attraction (LBA) between the distant outgroup taxa and Pleoidea, as well as LBA among taxa in the ingroup, made Nepomorpha appear to be polyphyletic. We used three complementary strategies to test and alleviate the effects of LBA: (1) the removal of distant outgroups from the analysis; (2) the addition of closely related outgroups; and (3) the addition of a mitochondrial genome from a second family of Pleoidea. We also performed likelihood-ratio tests to examine the support for monophyly of Nepomorpha with different combinations of taxa included in the analysis. Furthermore, we found that specimens of Helotrephes sp. were misidentified as Paraplea frontalis (Fieber, 1844) by Hua et al. (BMC Evol Biol 9: 134, 2009). CONCLUSIONS: All analyses that included the addition of more taxa significantly and consistently supported the placement of Pleoidea within the Nepomorpha (i.e., supported the monophyly of the traditional true water bugs). Our analyses further support a close relationship between Notonectoidea and Pleoidea within Nepomorpha, and the superfamilies Nepoidea, Ochteroidea, Naucoroidea, and Pleoidea are resolved as monophyletic in all trees with strong support. Our results also confirmed that monophyly of Nepomorpha clearly is not refuted by the mitochondrial genome data.


Asunto(s)
Heterópteros/clasificación , Heterópteros/genética , Animales , Genes de Insecto , Genoma Mitocondrial , Filogenia
15.
Immunogenetics ; 58(5-6): 396-406, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16738937

RESUMEN

Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray, short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found in classical class I molecules. The three alternative mRNAs would encode a full-length form, an isoform lacking the alpha2 domain, and one lacking both alpha2 and alpha3 domains. Genotyping both captive-bred and wild M. domestica from different geographic regions revealed no variation in the residues that make up Modo-UG's peptide-binding groove. Modo-UG's low polymorphism is contrasting to that of a nearby class I locus, Modo-UA1, which has a highly polymorphic peptide-binding region. Absence of functional polymorphism in Modo-UG is therefore not a general feature of opossum class I genes but the result of negative selection. Modo-UG is the first MHC linked marsupial class I to be described that appears to clearly have nonclassical features.


Asunto(s)
Genes MHC Clase I/genética , Antígenos de Histocompatibilidad Clase I/genética , Sitios Menores de Histocompatibilidad/genética , Monodelphis/inmunología , Polimorfismo Genético , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Antígenos de Histocompatibilidad Clase I/clasificación , Datos de Secuencia Molecular , Monodelphis/genética , Filogenia , ARN Mensajero/metabolismo
16.
Mamm Genome ; 15(10): 851-64, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15520888

RESUMEN

A 37-kb cosmid containing two complete major histocompatibility complex (MHC) class I alpha chain loci from the opossum Monodelphis domestica was isolated, fully sequenced, and characterized. This sequence represents the largest contiguous genomic sequence reported for the MHC region of a nonplacental mammal. Based on particular conserved amino acid residues, and limited expression analyses, the two MHC-I loci, designated ModoUB and ModoUC, appear to encode functional MHC-I molecules. The two coding regions are 98% identical at the nucleotide level; however, their promoter regions differ significantly. Two CpG islands present in the cosmid sequence correspond to the two coding regions. Twelve microsatellites and six retroelements were also present in the cosmid. The retroelements share highest sequence homology to the CORE-SINE family of retroelements. Due to high sequence identity, it is very likely that ModoUB and ModoUC loci are products of recent gene duplication that occurred less than 4 million years ago.


Asunto(s)
Cósmidos/genética , Genes MHC Clase I , Marsupiales/genética , Zarigüeyas/genética , Filogenia , Secuencia de Aminoácidos , Animales , Islas de CpG/genética , Exones/genética , Variación Genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Retroelementos/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...